If it's not what You are looking for type in the equation solver your own equation and let us solve it.
t^2-11.25t-19.83=0
a = 1; b = -11.25; c = -19.83;
Δ = b2-4ac
Δ = -11.252-4·1·(-19.83)
Δ = 205.8825
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-11.25)-\sqrt{205.8825}}{2*1}=\frac{11.25-\sqrt{205.8825}}{2} $$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-11.25)+\sqrt{205.8825}}{2*1}=\frac{11.25+\sqrt{205.8825}}{2} $
| 2=-6v+4(v+2) | | 9x-8=x+72 | | 92x+92=29x-11 | | (x+4)(x+2)-1=0 | | 12.27+100=5.1259+10x | | 7x-6=x+42 | | 7x+48=x+24 | | 3/2x+21/2=19 | | 9x-24=x+32 | | 9x-64=x-72 | | 29x+-92=29x-11 | | 7(4+4x)=140 | | 12=5y+8 | | 5x+5=-4+3x+13 | | 15w-9w=42 | | 28.00x+22.75=17.75+49.00 | | 7x+12=x-18 | | 106=-2(8n-7)-7n | | 5+2z=3 | | w/3+4=0 | | -c+7=11 | | 3x²+13x=10 | | 3=2v-5 | | 5x-(7-2x)x=-10 | | 102=-2(-8n+5) | | 2.27x+100=5.1529+10x | | 10x-72=x+54 | | 2(2x+9)=30 | | 3t-18=4(-3-0.75t | | 3t-18=4(-3-0.25t | | −4x7−26=9x+37 | | 21+9j-10=-127 |